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Abstract. The results of the evaluation of the viscosity cross-section for elastic electron-xenon collisions,
taking into account the spin-orbit interaction of the continuum electron, in the energy interval from 0.1 eV
to 50 eV are presented and discussed. The calculations are performed on the basis of three theoretically
derived sets of phase shift data obtained by different authors and on the deduced relativistic expression
for the viscosity cross-section in terms of phase shifts discerning the spin-up and spin-down states of
the scattered electrons. Comparison with viscosity cross-sections, as evaluated from non-relativistic phase
shifts extracted from experiments, strongly favours the relativistic results. The assumption of isotropic
scattering is critically examined and the error induced by its use is shown to persist to the same extent as
in non-relativistic calculations, at least in the energy region considered.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules

1 Introduction

In the experiment and theory of electron-atom collisions
the observed spin polarization (or depolarization, i.e.
change in polarization) of initially unpolarized (polarized)
electrons after being scattered by the target atom, has
gained increasing attention in the study of spin-dependent
interactions [1–6].

In the case of elastic electron scattering from heavy
targets in the ground state and without spin, such as the
heavier rare-gas atoms and xenon (5p6 1S0) in particu-
lar, the spin-polarization effect is caused by the spin-orbit
interaction of the continuum electron in the field of the
target atom with zero angular momentum. For this type
of collision process experiments have been achieved [1,6]
yielding a complete set of measured observables (namely,
the three polarization parameters and the absolute dif-
ferential cross-section), that contain the maximum possi-
ble information about the scattering as described by the
quantum-mechanical complex scattering amplitudes [6,7].
These can be adequately evaluated ab initio within the
relativistic formalism and, in particular, from the Dirac
equations which describe the electron spin and the spin-
orbit coupling [8,9]. Thus a valuable link between the ex-
periment and the theory is established, resulting in a new
thrust in this area of collision physics. Much of the inten-
sive research under way is devoted to the xenon target, as
both its high atomic number Z and closed-shell structure
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make it suitable for the study of the spin-orbit interaction
by way of the spin-polarization effect [3,4,10,11]. In these
studies the low-energy region, i.e. up to around 50 eV, is
of special interest [10–12] since, along with the electron
spin-orbit coupling, other interactions (e.g., the polariza-
tion of the atomic charge cloud by the electric field of
the slowly moving electron projectile) have to be carefully
considered there. For elastic low-energy electron-xenon (e-
Xe) scattering the spin-orbit interaction is large enough
to have its effect not only on the differential cross-section,
but also on the cross-sections integrated over the angles,
such as the total elastic Qt and momentum-transfer Qm
cross-sections [12]. It is well established that the spin-
orbit interaction, as described by the Dirac equations, al-
ters noticeably both Qt and Qm values, as compared with
the corresponding ones deduced on the basis of the spin-
independent Schrödinger equation. The common feature
of these changes is the displacement of the Ramsauer-
Townsend (RT) minimum to somewhat higher energies,
and the increase (decrease) of the cross-section values for
energies below (above) the RT minimum [9,12–14], result-
ing in an improved agreement between theory and mea-
surements.

As far as the elastic electron-atom/molecule scattering
is concerned, reliable data for integral cross-sections, other
than Qt and Qm, are of significant interest as well, as
these also determine the electron transport properties in
a variety of weakly ionized plasmas, gas discharges and
electron swarms. More precisely, the higher-order cross-
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sections, generally defined [15] as

Q(r)=2π

∫ π

0

σelea(ε, θ)[1−Pr(cos θ)] sin θdθ (r=1, 2, . . . ),

(1a)

where σelea(ε, θ) is the differential cross-section for elastic
electron-atom collisions and Pr(cos θ) are the Legendre
polynomials, or alternatively [16] as

Q(r) = 2π

∫ π

0

σelea(ε, θ)(1 − cosr θ) sin θdθ (r = 1, 2, . . . )

(1b)

appear in any kinetic modelling based on the multiterm
expansion of the electron energy distribution function
(EEDF) with respect to Legendre polynomials. It is eas-
ily seen that for anisotropic scattering (i.e. for σelea de-
pendent on θ), all Q(r) (or Q(r)) with r �= 1 differ from
Q(1)(≡ Q(1) ≡ Qm), and that they all converge to the
total cross-section Qt for large values of r.

In this paper the attention is focused on the viscosity
cross-section Qv≡Q(2) (r=2) taken, according to (1b), as

Qv = 2π

∫ π

0

σelea(ε, θ)(1 − cos2 θ) sin θdθ , (2)

and arising wherever the standard two-term (Lorentz) ap-
proximation is insufficient and, therefore, replaced by the
EEDF expansions with three or more terms retained. The
multiterm approximation (with r ranging from 3 up to 6
or 8) has been extensively used for almost two decades [17,
18] in accurate evaluations of the EEDF and of the related
electron transport parameters, especially if, in addition to
the presence of external electric field and inelastic (along
with the elastic) collisions, a spatial or temporal relax-
ation process takes place [19,20]. However, the anisotropy
of the scattering itself, although evident, is often neglected
in these evaluations without other justification than the
simplification it entails. The deep RT minima apparent in
the integral cross-sections for electron scattering in rare
gases of larger Z, in molecular gases like methane or in
mixtures of both, prevent successful randomization of the
electron velocities, especially if an inelastic process takes
place at energies around these minima which thereby con-
tribute to the anisotropy of the system in general and to
that of the EEDF in particular.

The distinction of higher-order cross-sections is also
important in deducing the cross-section data from elec-
tron transport parameters measured in swarm exper-
iments. The standard modified effective range theory
(MERT) [21], widely applied for the deduction of low-
energy Qm cross-sections, is extended [22] to yield sets of
higher-order cross-sections (e.g., up to r = 3, i.e. including
Qv, in [22]) which reproduce not only the measured elec-
tron drift velocity and transverse diffusion coefficient, but
the measured longitudinal diffusion coefficient as well. (In
fact, measurements of the longitudinal diffusion coefficient
have served as the basis for experimental determination of
the viscosity cross-section.)

Low-energy electron scattering from xenon deserves at-
tention from both the above-mentioned aspects. Xenon as
a high-Z target induces electron spin-orbit coupling large
enough to manifest in integral cross-sections and as a rare
gas is much exploited in different types of low-temperature
discharges important in technological applications (e.g.,
radiation detectors, efficient Xe-halide light sources). A
comprehensive study of underlying kinetics of the basi-
cally non-equilibrium, collision-dominated plasmas placed
in external electric fields requires, inter alia, a detailed
knowledge of the e-Xe cross-sections, including those of
higher order.

The viscosity cross-section for elastic e-Xe collisions
was evaluated previously [23] within the electron energy
interval 0.1 eV–54.4 eV. The evaluations were based on
different sets of phase shift data obtained from both the
non-relativistic ab initio calculations and the procedures
fitting to differential cross-sections measured in beam ex-
periments. It was found that the assumption of isotropic
scattering (which assumes that σelea is independent of θ and,
therefore, equates Qt and Qm and sets Qv/Qm = 2/3) can
induce errors in the actual Qv cross-section values as high
as 40% to 60%.

The aim of the present paper is to examine whether
and to what extent the spin-orbit interaction of the elec-
trons elastically scattered from xenon influences the vis-
cosity cross-section Qv as defined by (2), and to provide
low-energy (0.1 eV–50 eV) viscosity cross-section data as
a complement to abundant evaluations of the relativistic
total and momentum-transfer cross-sections for elastic e-
Xe collisions in this energy region. The present evaluations
of Qv are based on three sets of the phase shift data for
e-Xe elastic scattering previously determined from the so-
lution of the relativistic scattering equation by different
authors [24–26], and on the relativistic expression for Qv
which accounts for different electron spin directions after
scattering [27].

The results arrived at, as compared with Qv-values
deduced from experiments [28,29], indicate distinct im-
provement of the relativistic over non-relativistic calcula-
tions for the viscosity cross-section.

2 Basic data and evaluation procedure

The relativistic solution of the scattering problem yields
two different phase shifts δ+l (k) and δ−l (k), for the spin-
up (j = l + 1/2) and spin-down (j = l − 1/2) states, re-
spectively, which correspond to each orbital angular mo-
mentum l, l �= 0 and are functions of the electron lin-
ear momentum k. (In what follows atomic units are used,
except for the final cross-section results which are re-
ported in units 10−20 m2 as functions of energy in eV,
ε(eV) = 13.6058 k2.) In terms of these phase shifts the two
complex scattering amplitudes, i.e. the direct f(θ, δ+l , δ−l )
and the spin-change g(θ, δ+l , δ−l ) ones (e.g., [24]), are given
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by

f(θ, δ+l , δ−l ) =
1

2ik

∞∑
l=0

{(l + 1)[exp (2iδ+l ) − 1]

+l[exp (2iδ−l ) − 1]}Pl(cos θ) , (3)

and

g(θ, δ+l , δ−l ) =
1

2ik

∞∑
l=0

[exp (2iδ−l ) − exp (2iδ+l )]P 1l (cos θ) ,

(4)

where Pl(cos θ) and P 1l (cos θ) denote the Legendre and the
associated Legendre polynomials, respectively. The elastic
differential scattering cross-section for the unpolarized in-
cident electron beam is then

σelea(k, θ) =
∣∣f(θ, δ+l , δ−l )|2 + |g(θ, δ+l , δ−l )

∣∣2 . (5)

With the aid of equations (3-5) one can express the
integral cross-sections (namely, the total elastic Qt, the
momentum-transfer Qm and all the higher-order cross-
sections) in terms of the phase shifts δ+l and δ−l , and
the electron linear momentum k (i.e. electron energy ε).
By integrating over the scattering angle θ, in accordance
with (2) for the viscosity cross-section Qv in particular,
one obtains [27] the following sum over l:

Qv =
4π

k2

∞∑
l=0

[
(l + 1)(l + 2)(l + 3)

(2l + 3)(2l + 5)
sin2(δ+l+2 − δ+l )

+
l(l + 1)(l + 2)

(2l + 1)(2l + 3)
sin2(δ−l+2 − δ−l )

+
2(l + 1)(l + 2)

(2l + 1)(2l + 3)(2l + 5)
sin2(δ−l+2 − δ+l )

+
2l(l + 1)

(2l − 1)(2l + 1)(2l + 3)
sin2(δ+l − δ−l )

]
. (6)

The spin-orbit interaction is the most remarkable with
the lower partial waves (the p- and d-wave in particular)
and its significance tends to diminish with increasing l,
the differences between δ+l and δ−l becoming practically
negligible (δ+l ≈ δ−l = δl) for comparatively low values
of l, i.e. l ≥ 6. However, if the spin-orbit interaction is
neglected altogether (non-relativistic approach), the spin-
up and spin-down phase shifts merge (for all values of
l) into one, δ+l = δ−l ≡ δl, the spin change amplitude
g vanishes and the expression for Qv assumes the well-
known non-relativistic form [30]

Q(nr)v =
4π

k2

∞∑
l=0

(l + 1)(l + 2)
(2l + 3)

sin2(δl+2 − δl) . (7)

The present evaluations are based on three indepen-
dent, theoretically predicted complete sets of data on rel-
ativistic phase shifts for the elastic scattering of elec-
trons from xenon atoms. These sets of data are: (a) re-
ported by Sin Fai Lam [24], (b) derived by Sienkiewicz

and Baylis [25], and (c) obtained by McEachran and Stauf-
fer [26]. The choice of these particular phase shift data sets
was based on the reliability with which they appear to re-
produce the results of some measurements of e-Xe Qt and
Qm cross-sections [31–33], including some recent ones [2,
34]. All the three selected sets {δ±l (ε)} were derived within
the frame of the relativistic Hartree-Fock (Dirac-Fock)
theory. Each pertains to a somewhat different interval of
incident electron energies ε (linear momentum k) and ex-
tends over a different range of angular momenta l, from
l = 0 up to l = l∗ (l∗ denotes the highest angular mo-
mentum number for which the phase shifts δ±l∗ or δl∗ were
reported).

The evaluation of the set of phase shift data (a) (ε =
0.01–30 eV, δ±l for l = 0, 1, 2 and δl for l = 3, . . . , 8) was
performed in the static exchange approximation, the static
and relativistic potentials included. The exchange interac-
tion was taken into account only as described by the large
components of the bound-state orbitals and, consequently,
the Dirac equations were reduced to one Schrödinger-type
equation for the continuum wave function. The effects of
target polarization were taken into account by assuming
the Pople-Schofield polarization potential. However, the
one-electron terms in the exchange kernel have been ne-
glected.

The sets of phase shift data (b) and (c) were both eval-
uated by solving the Dirac equations, with relativistic and
polarization potentials, and exchange included for both
the large and small components of the continuum wave
function. (The method applied in obtaining data (c) is
analogous to the one described in [35] with the difference
that the phase shifts were obtained by solving the Dirac
equations directly [13] rather than by solving the corre-
sponding approximate relativistic Schrödinger equation,
as was done in [35].) Therefore, the main differences be-
tween the two approaches that led to phase shift data sets
(b) and (c) apparently arise from the different treatment
of the polarization interaction between the target and the
incident electron. In obtaining the set of phase shifts (b)
(ε = 0.4–30 eV, δ±l for l = 0, . . . , 5) all electrons were
treated as equivalent (i.e. indistinguishable), their interac-
tion being described by a single model polarization poten-
tial with one adjustable parameter. Moreover, additional
distortion of the atomic charge cloud due to exchange in-
teraction, i.e. the exchange polarization, was also taken
into account. In determining the set of phase shifts (c)
(ε = 0.1–50 eV, δ±l for l = 0, . . . , 11) the non-relativistic
ab initio polarized-orbital method was adopted, and in the
expansion of the polarization potential in multipoles only
the dipole part was retained [35].

The authors of (a) and (b) reported also the Qt and
Qm cross-sections that follow from their respective phase
shift data. Analogous evaluations of Qt and Qm were per-
formed on the basis of (c) (and repeated for sets (a) and
(b)) in the course of the present work; the results pertain-
ing to (a) and (b) were in remarkable agreement with the
cross-section values previously reported by the respective
authors.
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The viscosity cross-section values Qv for elastic e-Xe
collisions reported in this paper apply to incident electron
energies from 0.1 eV to 50 eV. This energy range, common
(at least in part) to the selected sets of phase shift input
data, embraces both the RT minimum and the subsequent
maximum in Qv (as well as in Qm and in Qt). It is also
the electron energy range within which the peculiarities of
elastic e-Xe collisions are known to be dominant for the
macroscopic behaviour of different low-temperature, low-
pressure discharges both in pure xenon, and in mixtures
of xenon with other rare gases [20,36].

The present calculations of Qv are carried out by ap-
plying the relativistic formula (6) to the phase shift sets
(a), (b) and (c) up to l = l∗. All the higher phase shifts,
i.e. for l > l∗, are accounted for by the non-relativistic
two-term formulae of Ali and Fraser [37] (i.e. up to order
k4 in the perturbation expansion, with the quadrupole po-
larizabitily set to zero):

tan δl = k2βal + k4β2bl (l > l∗) , (8)

where β is the dipole polarizability of the xenon atom
taken to be 27.06, and al and bl are coefficients dependent
upon l and given by Ali and Fraser [37]. By the use of (8)
the summations in (6) or (7) can be extended up to the
required accuracy. Presently, the truncation of the virtu-
ally infinite and convergent sum (6) is safely performed
at l = 100. As was shown on the basis of analytical es-
timates [27], truncating the sum at l = 100 instead of
extending it up to infinity induces a relative error in the
cut-off rest of the sum of about 10−6 with l∗ = 11 (data
(c)), and even less with l∗ = 8 and l∗ = 5 (data (a) and
(b), respectively).

3 Results and discussion

The obtained values for the viscosity cross-section for elas-
tic e-Xe collisions are listed in Table 1 and presented in
Figure 1. The results arrived at on the basis of the dif-
ferent data, (a) (dot-dashed curve), (b) (full light curve)
and (c) (bold curve), are seen to be in reasonable overall
agreement. In Figure 1 they are also compared with the
three sets of Qv-values reported earlier [23]. The theoret-
ical set of values (represented by the light dotted curve)
covering the whole energy interval considered pertains to
phase shifts deduced previously by McEachran and Stauf-
fer [38], within the non-relativistic approach that parallels
their relativistic one adopted for the extraction of data
(c). Two discrete sets of points (Fig. 1) correspond to
Qv’s that follow from two sets of phase shift data obtained
by different non-relativistic analysis techniques of mutu-
ally independent measurements of e-Xe elastic differential
cross-sections. The full triangles (at and below 1 eV) be-
long to the MERT parameters derived by Weyhreter et
al. [28]. The error bars on the respective Qv’s are esti-
mated presently on the basis of uncertainties in the first
two phase shifts l = 0, 1 (for which analytical expres-
sions as a function of energy and of fitting parameters
are provided by MERT) as induced by the uncertainty
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Fig. 1. Viscosity cross-section for elastic e-Xe collisions;
curves: dot-dashed (a) - Sin Fai Lam 1982, full (b) - Sienkiewicz
and Baylis 1989, bold (c) - McEachran and Stauffer 1998; light
dotted - McEachran and Stauffer 1984; points: full triangles (�)
- Weyhreter et al. 1988, hollow circles (◦) - Register et al. 1986.

in the energy scale reported by Weyhreter et al. to be
±15 meV. In the energy region from 1 eV and above, the
point-plotted Qv-values (hollow circles) follow from phase
shifts extracted by Register et al. [29]. Their estimate of
the overall relative error in normalized cross-sections (in-
cluding error in normalization, error in phase shifts and
systematic error) at each energy is taken to apply to the
Qv-values, too.

Figure 1 reflects the changes in the theoretically de-
duced Qv-values when according to (6) the spin polar-
ization of scattered electrons is taken into account. Main
features of the present Qv’s, as compared with the non-
relativistic theoretical results (much in analogy to Qt and
Qm [9,13]), are the displacement of the RT minimum (lo-
cated according to non-relativistic predictions at around
0.5 eV) to somewhat higher energies (most markedly, for
around 0.2 eV, with data (c)), and an increased minimum
cross-section value (a noticeable increase of about 60%
is seen with data (a)). According to all the three sets of
data (a), (b) and (c), the relativistic Qv’s are considerably
above the non-relativistic ones [23] for energies below the
RT minimum; not less than 20% with data (a), and even
by a factor of above 2 to around 3.6 with data (c). Quite
to the contrary, they are appreciably lower (as much as
55% with data (b) and (c)) than the non-relativistic val-
ues in the energy interval above the RT minimum and in-
cluding the maximum. According to data (a), (b) and (c)
the maximum in Qv, as compared to the non-relativistic
result, is displaced to somewhat higher energies with a
decreased maximum cross-section value; most noticeably,
around 25%, with data (b).

The two sets of phase shift data deduced by
McEachran and Stauffer, i.e. the one used presently (c)
and the non-relativistic one [38], are used as the most
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Table 1. Viscosity cross-section (in 10−20m2) for elastic e-Xe
collisions from phase shift data by (a) Sin Fai Lam 1982, (b)
Sienkiewicz and Baylis 1989, (c) McEachran and Stauffer 1998.

ε(eV) Qv (10−20 m2)

(a) (b) (c)

0.1 15.92 22.36
0.2 6.41 9.52
0.3 4.56
0.4 1.60 2.21
0.5 0.581 1.06
0.6 0.370 0.526
0.7 0.365
0.8 0.430 0.442
0.9 0.681
1 1.43 1.01 1.04
2 7.74 5.92 7.56
3 10.99 15.83
4 14.84 21.25
5 20.43 16.77 21.65
5.5 17.04
6 19.78
6.5 16.74
7 17.83
7.5 15.91
8 16.30
9 14.52 15.13
10 13.89 13.72 14.20
12.5 12.00
14 10.97
15 10.55 10.85
17.5 9.45
20 7.90 8.26 8.47
22.5 7.56
25 6.80 8.32 7.27
27 6.91
30 4.79 6.64 6.29
35 5.06
40 3.93
45 3.05
50 2.42

suitable to compare the deviations of the relativistic with
respect to the non-relativistic results pertaining to the first
three (i.e. Qt, Qm and Qv) integral cross-sections. For all
three cross-sections the largest deviations on the energy
interval examined occur around the RT minimum. It is
interesting to note that within this energy range the devi-
ations are the smallest in Qt, and much more significant
in Qm and Qv: being larger in Qm than in Qv for energies
below and smaller in Qm than in Qv for energies above
the RT minimum.

As compared with the cross-section values pertaining
to experiments, phase shift data (c) seem to reproduce
the RT minimum most satisfactorily. In the low-energy
region up to 2 eV, the Qv-values from data (c) fall into
the error bars, or are slightly above the upper limit of the

error bars, on the Qv-values pertaining to the experimen-
tal data of Weyhreter et al. [28] and Register et al. [29].
With respect to these experimental values, the Qv-values
deduced from data (b) show similar behaviour, though in
the energy range immediately following the RT minimum
and including the maximum, up to around 10 eV. Excel-
lent agreement between the four Qv-values, two theoret-
ical (pertaining to data (b) and (c)) and two experimen-
tal [23,28,29], is achieved at 1 eV. Thereafter up to some
15 eV good agreement between the Qv’s that follow from
data (a) and (c) is also seen.

In the intermediate energy region, between the RT
minimum and the maximum, the dominant contribution
to the integral cross-sections comes from the d-wave phase
shift, the Qv cross-section (6) being particularly sensitive
to the changes in the d-wave phase shift [23]. The rela-
tivistic decrease of the d-wave phase shift leads to lower
values of Qv, and this is still more noticeable if the ex-
change due to the polarization interaction is included, as
shown by data (b). Thus the Qv’s that follow from data
(b) are the lowest in the energy range considered while the
ones pertaining to data (a) and data (c), obtained within
the static and adiabatic exchange approximations, respec-
tively, fall approximately midway between the former and
the non-relativistic values. Good agreement between the
results that follow from the relativistic (c) and the non-
relativistic approach of McEachran and Stauffer [38] can
be noticed practically over the whole energy interval above
the maximum up to 50 eV. This is not surprising since,
as pointed out by those authors [35], the higher partial-
wave phase shifts, dominant in this energy range, show
diminishing splitting when evaluated relativistically and
for l = 6 are effectively quite close to the non-relativistic
ones [26,38]. However, at the high-energy tail substantial
discrepancies are noticed with respect to the values pre-
dicted from the experimental data of Register et al. [29],
clearly indicating the energy range (20–50 eV) in which
the general overestimate [14,24] of theoretically evaluated
integral cross-sections (including Qt and Qm) is yet to be
accounted for.

The importance of strict relativistic calculations for e-
Xe integral cross-sections is well illustrated by the sets of
theoretical phase shift data selected presently as they per-
tain not only to modified versions of the scattering equa-
tion, but also to different potentials used to account for
the correlation effects between the scattered electron and
the target electrons. The Qv-values that follow from phase
shifts deduced from the measurements clearly favour the
relativistic results. These are in much better agreement
with experiment if the phase shifts are determined from
the solution of the exact relativistic Dirac scattering equa-
tions and with the exchange polarization taken into ac-
count, rather than from the corresponding relativistic
Schrödinger equation and within the static exchange ap-
proximation.

As far as the error introduced by the assumption of
isotropic scattering is concerned, it is worthwhile noticing
that it persists with relativistic calculations to roughly
the same extent as with the non-relativistic ones [23]. The
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Fig. 2. Qv/Qm ratio for elastic e-Xe collisions; curves: dot-
dashed (a) - Sin Fai Lam 1982, full (b) - Sienkiewicz and Baylis
1989, bold (c) - McEachran and Stauffer 1998; light horizontal
line: isotropic scattering value, Qv/Qm = 2/3.

prominent peaks in the Qv/Qm ratio in Figure 2 agree
fairly well in that they indicate the energy regions where
the assumption of isotropic scattering underestimates the
actual Qv-values by as much as 50% (data (a)) in the
region of the RT minimum and 40% (data (a), (b) and
(c)) in the energy region of about 15 to 25 eV. The same
assumption, however, leads to an overestimation of the
actual Qv-values by about 20% (data (a) and (c)) in the
vicinity of the maximum, and by even 45% (data (c)) in
the high-energy tail.

The distinctly improved agreement between the Qv-
values derived from the phase shift data deduced from
measurements and the ones presently evaluated unques-
tionably supports the relativistic approach in determining
the viscosity cross-sections for elastic e-Xe scattering in
the energy interval considered. If relativistic phase shifts
are used as standard to reproduce accurate Qt- and Qm-
values, there is no reason not to apply them to the evalua-
tion of Qv too. The more so since the deviations of the rel-
ativistic with respect to non-relativistic cross-section val-
ues in the low-energy region are significantly larger in both
Qm and Qv than in Qt. Thus evaluated (by avoiding, inter
alia, the unreliable assumption of isotropic scattering) the
Qv’s are likely to prove useful in the study of e-Xe low-
temperature kinetics, given the general consensus that it
strongly depends on the accurate data for the collision
processes involved.
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